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ABSTRACT
In 1978, P. Rabinowitz proved a theorem concerned with the existence of a
nontrivial periodic solution of a nonlinear wave equation with a continuous
increasing superlinear nonlinear term. In this paper we present a new and
simpler proof of this theorem and relax an assumption on the nonlinear term,

which is a discontinuous nondecreasing function.
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SIGNIFICANCE AND EXPLANATION

The existence of a nontrivial periodic solution of a nonlinear wave

equation was obtained by P. Rabinowitz. We present a new and simpler proof

and extend the result to a more general case.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.
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This paper concerns a new simpler proof of the existence of a nontrivial

periodic solution of a nonlinear wave equation. Namely, we prove the

following theorem:

Theorem Suppose that

1 1 . -~ .
(G4) g: R * R is a nondecreasing function such that g 1(0) is a

closed interval including 0 .

(Gy) T 6 ¢ {0,) and a constant Cy such that

0) for t ? C0 >0

6 t glt

c(t) := [Fglsras < |
0 © t g(t + Q) for t < -Co <0

I

(G4} lim g(t)/t = 0 .
0

o0
Then there exists a nontrivial (weak) solution u € L of

utt Su + g(u) = 0 for (x,t) & @ = (0,m) x (Q,2mW) )
(1) u(0,t) = u(n,t) = 0 (2)
u(x,0) = u(x,2n) (3)

It is well known, that the pioneering work of P. Rabinowitz [1] made a

breakthrough and stimulated great interest in this problem. The assumption

(G1) in our theorem is slightly weaker than that in [1]}, where g is assumed

to be continuous. Recently, H, Brézis, J. M. Coron and L. Nirenberg {2]

’Partially supported by the University of Wisconsin Graduate School Research

Committee.

Sponsored by the United States Army under Contract No. DAAG29-80-~C-0041.
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presented a simpler proof of the theorem of Rabinowitz, under slightly
different conditions. Their method of proof, which is based on a duality
argument and a modified (P. S. condition and) mountain pass lemma, is quite
powerful. After learning of their paper, we tried to better understand their
method, and to modify their proof so that one does not have to change the (P.
S. condition and the) mountain pass lemma. There are two main differences
between the techniques of [2]) and this paper: (1) 1In (2] , the inverse
function of g is truncated into a bounded function, but in this paper, it is
truncated into a power function, as a result of which the mountain pass
condition becomes easier to check and it is not necessary to assume the period
is small; (2) An e€e-perturbation technique is used here, in order to ensure
that the P. S. condition holds. It seems that our technique is easier to
extend to case where g(u) is discontinuous.

Let Au = u., - u,. be the wave operator acting on functions in L1
satisfying (2), (3). Let N(A) be the kernel of A , and R{(A) be the range
of A . It is known (2] that

2%
(R) and [ p =0} .

0
Let K be the inverse of A , K 1is defined on R(A), and bounded in the

1

N(A) = {p(t+x) - p(t-x)|p is 2n-periodic, p € L) oc

following sense [2] :

I Kull o S C1Huﬂ 7 (4)
- L L
Let g be the maximal monotone graph associated with the nondecreasing
function g , i.e. g is the set-valued map: u * [g(u-0), g(ut0)]. Let
h be the inverse maximal monotone graph of g , i.e. for u e h(v) if and

A

only if v € g(u). According to the assumption (G,), g(u) =+ t « as
u* t » (see below (23)), except if g = 0 (but in this case the existence
of nontrivial solutions is obvious), therefore to define a nondecreasing

function h : R1 + R1 such that h(v) = {h(v=0), h(v+0)] .

Ata e




According to the assumption (G,), 0 € h(0) .

1e As in [2) , we begin by converting our problem (I) into the

following problem:

L]
(I1) Find veE:={velP () [ ve =0 wy e 1P(2) n N} where

1 1 1
> + o 1, pe (2, g) and x € N(A) such that v,X satisfy b,

X € K v + h(v) .

For if v is a nontrivial solution of (§) , set u=yx - Kv , we have
{: Au+ va="
u € h(v) .

~

Au + g (u) > 0 .

Then

Then by Theorem 3.1 in [3] , u is also a nontrivial solution of the problem
(1).

2°. Before solving the problem (II) we consider a truncated and

perturbed problem:

Find v € E, x € N(A) such that

+
X € Kv hM,e(V) (6)
where
- p'-2
By, (V) = hy(v) + €lvi v
and
p'-1 .
h(M) [1 + —— (v=-M) ) if v>M
wP' ! ,
h,(v) = h(v) if vl < M r
t
h(-M) (1 4 —— Jveul® " if v om .
p'-1
M
]
Let
v
Hy (V) = é hy ¢(8)ds (7)




HM e(v) is a convex function, provided that hM € is nondecreasing. We
’ [

look for critical points of the following functional on E
£ (v =% [Rvev+ [H _(v). (8)
M,€

Q g ME

It is worth pointing out that the functional fM e is not differentiable
’

on the space E , but only locally Lipschitzian. The critical point Vo of

f is understood in the generalized sense, i.e., 0 € 9f (v.) where Of
M,E M,e" 0

is the generalized gradient of f (cf. [4](5]).
Note that

an,S(V) cd'lp é Kv * v+ 3 £ By, efV)

The functional v + f HM e(v) is convex and the generalized gradient for a
Q ’

convex functional coincides with its subdifferential. The Hahn Banach

separation theorem implies that the subdifferential of f HM e(v) on the
’

-~

gspace E 1is equal to hM e(v) - X where x € N(A), This proves
’
(= -
an,e(v) Kv + hM,e(v) X o
Therefore, if Vg is a critical point of fM e ! then it solves the relation
14

(6).

3°, Now we apply the mountain pass lemma (for locally Lip. functionals
(cf. [4], Theorem 3.4) to prove the existence of a nontrivial critical point
of fM,e'
The mountain pass lemma reads as follows:
Let X be a Banach space, let f be a locally Lipschitzian function
defined on X . Assume the following conditions on f are satisfied:

(1) The (P.A.)+ condition. i.e. Any sequence {xn} in X , along

which




3 constants « such that 0 < a, < f(xn) < a and

1% 1 2

k(xn) := Min lw i >0 as n-+®
w € df(x )
n n

possesses a convergent subsequence.

(2) There exists r, p > 0 with f > 0 in the ball without b

e : Bz_\e and fls > p where S, is the sphere with radius r .
r
(3) There is an e € X, e # 8 such that f(e) =0 . Then f has a

nontrivial critical point.

Verification of the (P. S.)* condition.

Let {vn} be a sequence in E such that

< <
0 < « fM,e(Vn) a

3 (9)

2

Alv ) := Min ﬂwnﬂ + 0 as n + o, (10)
n w € 3f. (v) LP
n M,€ n

We shall prove that vV, Ppossesses a convergent subsequence in E .
(1) Firstly, we show v is bounded : ﬂvnu p’ € C (in the following,

n
L
various constants are all denoted by C if there is no confusion). We have

1
o, < f /2 (Kvn)vn + HM,E(vn) < a, (11)
Q Y]
wot X € K Vo + hM,e‘vn) (12)

R

where lwnl P = A(vn) and X, € N(A). Equation (12) implies that
L

: - p'=2 € n ,
a En " + Elvnl v with n. hM(vn) such that .

wn+xn=l(vn+£n. (13)




Combining (11) with (13), we obtain

-1 < +1 .
/ Hy e (V) = %28 o v <o, +1 A(vn)lvnlle, (14)
However, there is a constant CM , such that

4

o + e)viP 2y - c < h (v0) < (v0) < (of + e)vIP 2y + ¢ (15)
M M M€ Py, e M

M

for v » (or <) 0 , where ot = 317 h(z M), and hence
M oP -1
l_lgl
v
> + -
HM,e(v) (aM €) o' CMlvl (16)

where Oy = min{o;, 0;} . Substituting (15), (16) into (14), we have

1 1 p' 3 1
—_ - + - = < + .
(or - Y20y, E)sfl v | 3 é Cul vl € ay + WA rv i,
L
Thus,
Ivnl ' <€C . (17)
LP
(2) Secondly, since v, possesses a weakly convergent subsequence,
*
which we still denote by v, ¢ Suppose vn - v , the following relation:
; * *
l lim [ En A -[ kv v (18)
| n,mre  Q Q

! follows from (13) and the compactness of K .

*
(3) Finally, we prove the subsequence v converges to v strongly

n
4
in LP'. 1If not, § > 0 and subsequences {v_}, {v_ 1 such that
n m .
i i X
an'Vm' '>6 ¥vi.
i i P ‘

On the one hand, (18) implies




14
i
1
§

I(En -E NV -v ) +0  as ire., (19)

Oon the other hand, since hM(v) is nondecreasing,

[ @&, =g v -v )= / +
Q i i 1 i {yeﬂlvn.(y)>vm_(y)} {yeﬂlvn_(y)<vm.(y)}
1 1 1 1
'-2 pc_z
> ¢ f (lv |p v = v | v. ) (v. =v_ )
g " ny my I 1

- - p'-2 _ 2
e[/ v (y)+ (1 v () (v, (y) = v (y)

114 i i i i
2
- pl pl
€ (sz vy, (1) = v (17D 2 .
> PRy > 2-p" > 0 (Holder inequality)
=B c
L L
(v o+ 2w o (P) P
Q i i

*
for some X € (0,1). This contradicts (19). Thus v, » v in LP'

strongly.

Verification of the condition:

b
fH,G(V)|Sr p >0, for small r > 0 ,

where p is a constant, independent of € , and Sr is the sphere with

radius r .

According to the assumption (G3), we have

H (v)
lim -5—5—- = 4, (21)
v+0 v




Combining (21) with (16) yields

Cs v2 if |v| € §
5 .
HM(v) 6C6|v| if 8§ < |v] < T
m p' if |v] > T
- {vi
b
Cy 3*—1
where C, > +» as §+0, anda T = ( 1 3 ]p . By (4)
(o7 = 2%
c o ,
fM e(v) > - - llvll21 + CG f v2 + § Cé f |v] + EE f |v|p .
’ 2 L |v|<§ §<|v]<T Jvi>T K
Since
2
¢ [ Ivl® < mes() [ |vI©,
Jv|<8$ [vi<$ :
it follows that i?
i
1 R
] L]
vl <mes(@®P( [ vIPHP
|vl>T |v|>T
Bl
' -
[ P < v2)? mes() 7P /2 '
|v|<$ |v]<$
—= [ WP <
1 Vl IVI ’
P S<|visT 8<|v|<T \
%
1
P, D"
and that f vl < 1 for (f Iv|® ] = r with r sufficiently small.
9} Q
3 z ;
Firstly, we fix § > 0 such that C6 > 3 C1 mes (1) + mes(Q)p and then

choose r small enough such that




.

2
3 2 ' ot !
ocg [ Wl-Zct [ WhEs o [ (wiP)P
S<jvij<r §<ivi<T S<|vi<T ;
o 2_ |
[ 3 ' ' [
2—“ [ P~ 5 ey [ yenzs ! [viPHP
|v|>T |vi>T (v>T
It follows that (:
|
z 2 2 |
p'p’ p'\p' p',p' i
£,M 2 C [ PO w0 [ WwIPHP e [P
! {vi<é < v|<T [vi>T ,
_2_ o
L] L]
sc () WIPHP =c?  for vl , ==x
P g p P

where C is a constant depends on p . Let p = cpr2 . which is a constant

independent of € .

Verification of the condition

d e € E such that fM E(e) =0 with e >r .,

In fact, taking e, = tvq, where Yq is an eigenfunction of K ,

associated with a negative eigenvalue, let X, = -f K ¥y 92 0 . Therefore
A p'
1 .2 t p'
fyel®) S- 7 ¢ * (o)+ e)f le, 15+ thJ’ lo, | » ==, as t=»w,

g' = — max{h(M) - h(-M)}. Thus & a t > 0 such that

where 3
M uP 1

-

fM'E(t¢1) =0 , with Mt¢1n >ro.
Applying the mountain pass lemma, there exists a critical

point vMe of fME such that




4° Return to the unmodified problem

By the characterization of the critical value

f (

<
M, e lee) < Max £ (se) c, (22)

se(0,1] M€

where constant C does not depend on € or M . In fact, with no loss of
generality, we assume 0 < 0 <1@ and Cy > 1 in the assumption (G,),

i.e., G(u) < 8 ug(u=-0) as t > Cop

By an approximation procedure using differentiable functions, we see

d

C1 ue < G(u) where C; 1is a constant.
Thus 1
C - =1 C
g(u=0) » A ue > .\ up~1 (z3)
0 6
and we have
L.
v+ 0) < c, v ! (24)

L
where 02 = ( %— )p ! « This implies
1 L}

H(v) < c, v* +c, vV v>0.

Similarly, for v < 0 , we have

’ -
h(v ~ 0) » -c2|v|p 1 (24)"
and
et
H(v) < Czlvl + c3 .
Since
H(v) if |v] < M
HM(V) =
1 [}
H(v) £ h(M)[ |vem| + -———7—TlvtMlp ] if jvl > M
p'MF ”
we have
]
Hy (V) < c4lv|p +C (25)

5

~10~

.,,.

4

L e

. X,

-
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where C, and Cg are constants, independent of M . Substituting (25) into

(23), we see

£, (v. ) <& Max f_ (se) < Max f_ (tv,)
M, M,E sc(0,1) M€ telo o) MeE 1
Ao '
< Max [ -5 t°+ cs(c4+1)cp +cl<cy .
te(0,»)

The constant Cg is independent of € and M i.e. (22) holds.

Repeating the procedure performed in verifying the P.S. condition, we

obtain

llvM I, <c (C does not depend on € and M too).

Therefore there is a weakly convergent subsequence Ve Y Vyoo with
i

Hlelp. < C . We are going to prove that v, is a nontrivial critical point
L

M,0 ° In fact, by the monotonicity of hM , we have

of £

J'(zi-s)(ve-cno VZeE
i

for each Ei € hM(vsi), E e hM(c). Since

~

+
4 x € N(A) such that yx € K vM'e hn,e(vn,e)

we have

It lv_ P72 E)( ) > 0
-Kv - € v v - v - c -
P 1 €1 €i

Set [ = ;H = vh +tn, VneE. Due to the weakly upper semi-

continuity of the set-valued map Gy hM(cM) (cf. [4) §1, prop. (6)), we get

E. € hM(vM) such that

[k, +EgI>0 VneE

i.e. % X € N(A) such that

X [ 4 VM + hM(VM).

-1~
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According to the convexity of Hy and the lower semi-continuity of

f HM(V) ¢+ it follows

£ (v.,) = lim f (v_)>p>0.
MOTM L TME ey

Lastly in order to get rid of the influence of M , we shall prove the

following

50

a priori estimate: ¥ constant C, independent of M such that

If (26) holds, then vy is a solution of the problem II for M > C .

It has already been proved that

It vM"Lp' <C; (27)

and by (24) and (24')

Thus

L.
Jhiv £ 0)| < c2|v|p 1,

-1
< v E
IhM(v + 0)] C3| |

which implies

< .
I hM(vM % 0)IILp C, (28)

Moreover, it follows from (4) and (27) that

B 3 lean < Cq (29)

so we obtain

Iy +h .
Xy P <cg for Xy € K vy hM(vM) (30)

By the definition of hM s, in order to get the estimate (26), we only need an

o
L

a priori bound for Xy * i.e.

leMlle <c, (31)

-12=-

Rad




According to (6]
xM(x,t) = qM(x +t) - qM(t - x)

where
1

qt) = 3= [T Ix,(x,t=x) = x, (x,e4x))ax .
0

We know q, € tP(0,2n) from (30), so that

gt <C_ »
M V0,m 8
It is easily seen that

f“[v (x,t=x) - v (x,t+x)]dx = 0 for a.e.t
0 M M
and from (29) and (32) we have

-C5 + qM(t+x) - qM(t-x) < uM(x,t) < c5 + qM(t+x) - %u(t'X) .

(32)

(33)

(34)

Let gy be the inverse function of hM' which coincides with g before

truncation

gM(-C5 + qM(t+x) - qM(t-x)-O) < vM(x,t) < gM(C5 + qM(t+x) - qM(t-x)+0).

One deduces from (34) that

[31G,(=C5 + qy(t) = q,(5))ds < 0 a.e.t.
0

where ;M(“) = gn(u-O) - gM(-u+0) is an odd increasing function.

such that qu(t) > 0 we get

(t)

gM(-c5 + qM(t) - qM(s)) > gh( P ) if qM(s) + Cg <

gﬁ(-cs + qM(t) - qM(s)) > -gM(qM(B) + CS) if qM(s) + Cs >

Substituting these two inequalities into (35), one obtains

q,lt) q.,(t)
Il —2

0

(35)

Fixing ¢t ,

Jmes{s € (0,2n)|qM(s) < M2 - cs} < fzwsM(qM(a) + cs)ds a.e.t

(36)

ey e -

A S

i




Since 9y € Lp-1(0,2n) and ;M is of the growth power p-1 , the RHS of
(36) is bounded by a constant Cy .

Firstly, we prove € ﬁ'(0,2ﬂ). In fact,
qM C

~ M
q g such that gﬁ(uo) > po

3 uy such that mes{s ¢ (0,2ﬂ)|qM(s) < u1} >n .
Let n = max {2u_, 2(u, + C_)} . If ess sup q,(t) were not bounded,
0 1 S ‘M
t e (0,2m)
then the set S = {t € (0,2ﬂ)|qM(t) > n} would not be a null set. But for

t €8S, (36) cannot hold. This is a contradiction. Similarly, we prove

that ess inf q_(t) 1is bounded too.
M
t e (0,2m)

Lastly, set
u, = ess sup q.(t) ,
" oteo,m M

we shall prove p_, is bounded in M . Let z ={se (O,Zw)lqM(s)

M
u 2¢ 2c
>} .. Then mes(J) < —2, i.e. mes(CJ) > 21 ~ —> . Let
2 Uy My

teT ={te (o,zw)lqM(t) > u, - 1}. This is not a null set. Substituting

into (35), we get

- — - - — + -
(2w ™ )gh( c5 1+ 3 ) € 27 g'M(c5 1)

This proves u is bounded. Similarly, we estimate ess inf qg_(t) 1i.e.
M te (0,20)

lig M <C it implies (31) provided by (32).

'
M L” 9

The proof is complete,

Remark 1 The above method can be extended to attack the following more

general problem:

-14-
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ST —

Uy =W + g(t,xju) =0 for (x,t) € (0,7) x (0,T)

u(0,t) = u(w,t) =0

u(x,0) = u(x,T)

2%
where T = i A is a rational number, and g{t,x,u) is a Baire measurable

function defined on (0,w) x (0,T) Xx R1 . satisfying the following

conditions
(G4)! g(t,x,0) = 0 , and for fixed (t,x), g(t,x,:) is strictly
increasing in u.
(Gy)* T20¢€ (0,7%) and a constant Cq > 0 such that
| 6 u g(t,x,u~0) for u > C0
G(t,x,u) = fu g(t,x,s)ds <
° 0 u g(t,x,u+0) for u < -C0 .
(G3)' lim gltexem) _ 0 uniformly with respect to
u*0
(t,x) € (0,7) x (0,T).
(G4)' g(t,x,u) is optimal in the sense discussed in [3] .

Remark 2. We would like to emphasize a difference between [2] and our work.
In [2), under slightly weaker growth conditions than (G,) and G,), Brezis,
Coron and Nirenberg have proved the éxistence of a nontrivial solution for
periods which are small rational multiples of 2m . If g(t,x,u) does not
depend on t, of course such a solution is also a 2m periodic solution.

But, if g(t,x,u) does depend on T , their method does not seem to work.

We wish to express our grateful thanks to Professor P. Rabinowitz for his

kindly help.
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